PAR101 Library class
2019

Roger Carter
Liaison Librarian
Science, Health & Sports Science

Source: www.111emergency.co.nz
WARNING NOTICE

Commonwealth of Australia | Copyright Regulations 1969

WARNING
This material has been copied and communicated to you by or on behalf of the University of the Sunshine Coast pursuant to Part VA or Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.
Learning Outcomes

• Understand the principles of literature searching
• Identify useful sources for finding resources
 • Discover, Library guide, Google Scholar
• Understand search strategies
• Learn how to identify suitable quality sources
What? – clarify your topic

Where? – possible sources

How? – to search for it

Use the Paramedic Science Library Guide
clarify (understand?) your topic!

“Discuss Primary Percutaneous Coronary Intervention for Patients Presenting With ST-Elevation Myocardial Infarction”

Are you going to understand this and start an assignment without some pre-reading and first finding out what this is actually about?

NOTE: There are many resources in the Biomedical Science Guide and the Nursing & Midwifery Guide also relevant to your learning of A&P and other topics!
Paramedic Science

A guide to quality information sources

Getting Started

Before you begin searching for information, make sure you understand your topic and what you don’t know.

1. Write down what you already know about the topic and what you need to find out.
2. Find dictionaries, encyclopedias for an overview of your topic.
3. Find textbooks to broaden your knowledge of your topic and to identify keywords.
4. Find academic journal articles for detailed arguments about specific points.

Write down what you know and need to know

Find dictionaries and encyclopedias

Find textbooks

Find academic journal articles

- Gives you a starting point for your research
- Provide an overview of the topic
- Broaden your knowledge of the topic
- Detailed arguments on specific points

Related Guides:
- Find information
- I’m doing an assignment
- Research skills tutorial

Must read

An innovation in pre-hospital care after acute ischaemic stroke.

Use your textbook !!!
–(there are copies in the Library)
New terms?: Use dictionaries and your textbook or other textbooks

- Myocardial infarction....
- Percutaneous...
- Coronary...

Listed in the Library Guide

Available online
Start with books – (including your textbook)

- Get a feel for the topic
- Read the introduction
- Use *their* reference list
- Identify key words and phrases to use for searching
- Then: Use DISCOVER or Google Scholar Search to find articles
Search for: Discover Catalogue Journal Articles Course Reserve

Search Scope: Search Everything

Any field contains "myocardial infarction"

AND Any field contains "percutaneous coronary"

-> Any field contains "myocardial infarction" AND Any field contains "percutaneous coronary"
Searching strategy in DISCOVER and most other databases

AND – \(\text{paramedics AND australia} \)
--different concepts → narrows search

OR- \(\text{paramedic OR ambulance} \)
--similar concepts → broader search

NOT- \(\text{heart NOT love} \)
--excludes words (use with care)
Search terms- think “alternative terms”

• Don’t just search for “semi-rigid collars” and think you will find everything. Many relevant articles hardly use this term at all.

• Also try broader or related concepts like “immobilisation” along with terms like “spinal cord injuries, “spinal injuries”, “cervical injuries” “emergency medical services” (or “EMS”) and others

• One good journal article can give you new ideas on what terms are good to search to find more...
Extending the paramedic role in rural Australia: a story of flexibility and innovation
Published by Deakin University, 2012. Full-text at USC Library

From stretcher-bearer to paramedic: the Australian paramedics' move towards professionalisation
Published by Deakin University, 2012. Full-text at USC Library

Trends in the paramedic workforce: a profession in transition
Published by Deakin University, 2012. Full-text at USC Library

The politics of professionalisation: Some implications for the occupation of ambulance paramedics in Australia
Published by Deakin University, 2012. Full-text at USC Library
What is “peer review”?

• Peer review is a quality control system used by most scholarly journals. Submitted articles are reviewed by other experts in that field to see if methods and conclusions are valid. If not, the article may not be published, unless it is rewritten, resubmitted, reviewed again etc.

• Note: “Peer-reviewed”, “refereed”, “academic” and “scholarly” are all terms used in databases that often mean the same thing!
UlrichsWeb database indicates peer-reviewed/refereed journals

Australasian Journal of Paramedicine

<table>
<thead>
<tr>
<th>Title Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists</td>
</tr>
<tr>
<td>Marked Titles (0)</td>
</tr>
<tr>
<td>Search History</td>
</tr>
<tr>
<td>Australasian Journal of Paramedicine (126513)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
</tr>
<tr>
<td>ISSN</td>
</tr>
<tr>
<td>Publisher</td>
</tr>
<tr>
<td>Country</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Start Year</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Language of Text</td>
</tr>
<tr>
<td>Refereed</td>
</tr>
<tr>
<td>Abstracted / Indexed</td>
</tr>
<tr>
<td>Serial Type</td>
</tr>
<tr>
<td>Content Type</td>
</tr>
<tr>
<td>Format</td>
</tr>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Email</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
Some Vancouver things

• Vancouver style is widely adapted for use in medical and allied health journals

• *Citing Medicine* is a free **full** online Vancouver guide: http://www.ncbi.nlm.nih.gov/books/NBK7256/

• Journal abbreviations and the corresponding full titles are searchable here: https://www.ncbi.nlm.nih.gov/nlmcatalog/journals

• Always check your references against the Academic Skills quick guide on Vancouver available free on Blackboard—never guess or reference from memory!
Vancouver used in a top medical journal (New England Journal of Medicine)

type of intravenous fluid can result in fluid overload if administered in excessive quantities (for example, in patients with end-stage renal disease or heart failure in whom both sodium excretion and water excretion are impaired)." Isotonic fluids are otherwise incapable of producing hypernatremia or fluid overload, because a normally functioning kidney can generate free water by excreting a hypertonic urine. This is a physiologic response, as we have described previously in healthy ambulatory children, and this response explains why hypernatremia (rather than fluid overload) develops in patients with a syndrome of inappropriate secretion of antidiuretic hormone (SIADH)-like states in response to intravenous fluids. The subclinical volume expansion associated with an excess of arginine vasopressin triggers hemodynamic regulatory mechanisms to maintain plasma volume at the expense of plasma sodium, which is in part due to a pressure-natriuresis mechanism and a secondary release of natriuretic peptides.

As was stated in our article, in more than 15 randomized, prospective trials involving more than 2000 patients, isotonic fluids were not associated with an increased risk of hypernatremia or fluid overload. In Table 1 and Figure 2 of our article, we outline the disease states that require special considerations in fluid management, and we provide an algorithm for adjusting the intravenous-fluid rate and composition in order to prevent fluid overload and hypernatremia.

Chua and Lief raise an additional concern regarding the high chloride concentration in 0.9% saline. After the publication of our article, a randomized study by Young et al. compared 0.9% saline with a balanced electrolyte solution in more than 2000 critically ill patients. They found no significant between-group differences in complications such as acute kidney injury, a need for mechanical ventilation, electrolyte disturbances, and death.

Lief questions the needs for maintenance fluids in critically ill patients owing to the risk of fluid overload. As stated in Figure 2 of our article, maintenance fluids are indicated only after the resuscitation phase of fluid therapy, and we recommend fluid restriction to 25 ml per hour for oliguric states in order to prevent fluid overload.

Petzold et al. correctly point out the dangers of hyperglycemia in patients with stroke. To the best of our knowledge, 5% dextrose in maintenance fluids is not associated with hyperglycemia in the absence of diabetes.

Michael L. Moritz, M.D.
Children's Hospital of Pittsburgh
Pittsburgh, PA
moritzml@upmc.edu
Juan C. Ayus, M.D.
Renal Consultants of Houston
Houston, TX

Since publication of their article, the authors report no further potential conflict of interest.

Getting Help

Ask a Librarian:

• In Person at the Information Desk

• By Telephone 5430 2803

• Email InfoDesk@usc.edu.au

• Or ‘Ask A Librarian’ online

• Attend Health drop-in (Wed: 11am—1pm on Library Ground Floor)
• Use the Paramedic Science Library Guide: http://libguides.usc.edu.au/paramedic